

CoMobility Co-Designing Inclusive Mobility

engaged neighbourhood **#** sustainable mobility choices *#* artificial intelligence # clean air # carbon neutral # human centered # package of tools for stakeholders

Kick-off meeting

Anna Nicińska

March 18-19, 2021 Online from Oslo, Lublin, and Warsaw

Narodowe Centrum Badań i Rozwoju

SOME QUOTES FROM THE PROPOSAL

- building people-centred cities that facilitate active transport modes and reduce number of trips by private cars is much needed
- policy-makers lack effective approaches for convincing public opinion to support reduction of car ownership
- engage neighbourhoods in designing people-centred mobility solutions to decrease air pollution
- by tight, ongoing, and regular cooperation with municipalities, citizens, businesses and other local stakeholders we build a platform for democratic exchange of experiences. • we use the expressed voices to learn about barriers and opportunities in adapting environmentally-friendly mobility choices.
- the solutions co-created and tested in the city lab framework will be disseminated during workshops with participants from other cities

ACCESS TO MOBILITY SERVICES OVER CAR OWNERSHIP

A package of methods and tools to change mobility choices:

- 1) a method for co-designing inclusive and evolving mobility in local communities;
- 2) air quality and climate change projections for future mobility scenarios;
- 3) identify barriers and opportunities for reduction of car ownership in Poland; 4) evaluate possible benefits of various mobility solutions;
- 5) develop transfer learning for data to ensure scalability and transferability;
- 6) evaluate transferability of the solutions between municipalities;
- deliver open access to the ML model of individual mobility choices; 7)
- 8) build awareness of the relation between mobility choices and air quality;
- 9) promote active mobility and public transport in local communities.

POLAND AND WARSAW

High use of passenger cars in **Poland**

- **21 million** cars (in total, 2016),
- 526 (2014) \rightarrow 571 (2016) passenger cars per 1000 inhabitants,
- cars trips = 77.3% of passenger-kilometers travelled (2015),
- use of buses and coaches (14.5%) > EU28 average (9.4%) (EC, 2019).

High use of passenger cars in Warsaw

- **1.18 million** passenger cars registered (2016),
- 673 passenger cars per 1000 inhabitants (2016), from 433 in Wilanów to 1001 in Śródmieście,
- **1136.5 mln** passengers of public transport (2016),
- 14 parkings "Park and ride" (4242 spaces) and 493 km of cycling roads (2016),
- 205 city bikes stations (Veturilo) with 3059 bicycles in 2016 (GUS 2017)
- ongoing debate on private cars, road safety, air quality in Warsaw

• 22% of the voivodeship's road traffic incidents took place in Warsaw in 2020, 23.5% in 2019 (GUS 2020)

BIGGER PICTURE

Open science

- transparency of research process
- stakeholders' co-ownership of scientific production
- open access to data, methods, and publications if possible (IPR and GDPR regulations)
- wide set of audiences of the research and respective pro-active communication
- scientific literacy of citizens
- incentives for reorganization of municipalities decision making process
- scientific excellence of team and students

Advances

- higher geographical resolution data
- knowledge for policy-makers and access to data-driven solutions
- access to the models and methods in various contexts
- access to information for general public, citizens and journalists
- innovations in local business
- improved air quality, better health, and reduction of economic losses due to ill-health

PROCESSES AND METHODS

CO-DESIGN PROCESS

Tight cooperation with:

- citizens,
- municipalities, ullet
- businesses, ullet
- other stakeholders at each stage of the project

DATA COLLECTION IN COMOBILITY

××<<

TRANSPORT MODELLING

EMISSION MODEL

PROCESSES AND METHODS, in detail

ES	
	DC

ED	DESIGN)
-		

CL: City Labs

- co-creation of mobility solutions and real life scenarios tested in 5 (3+2) City Labs
- education, gamification and citizen science

DC: Data Collection

- data (qual. & quant.) collection in schools (each CL) and Warsaw
- experts interviews
- existing city data

ML: Machine Learning

- predictions on mobility choices based on individual and transport system features

EM: Environmental Model

- predictions on air pollution and greenhouse gases reduction to test real life and hypothetical scenarios

Iteration, evaluation, transferability, scalability

WORK PLAN

SGH

Szkoła Główna

w Warszawie

Politechnika

Warszawska

Handlowa

NILU

WP4

WP5

WP6

CO-OPERATION

1 Capital City of Warsaw

2 Association of Polish Cities, City of Cracow

3 Subcontractors: transport model, surveys

JNIWERSYTET WARSZAWSKI

Magdalena Kubecka, Marta Trakul-Masłowska

Anna Nicińska, Satia Rożynek, Grzegorz Kula, Joanna Rachubik, Ewa Zawojska

Politechnika Warszawska

Maciej Grzenda, Marcin Luckner

Norsk institutt for luftforskning Norwegian Institute for Air Research

Nuria Castell, Gabriela Sousa Santos

FRIDTJOF NANSENS INSTITUTT FRIDTJOF NANSEN INSTITUTE

Pal Wilter Skedsmo

SGH

Szkoła Główna Handlowa w Warszawie

Jakub Zawieska Michał Jakubczyk Łukasz Czarnecki Łukasz Ponikiewski

Dorota Wolińska, Szymon Horosiewicz

